This course was created with the
course builder. Create your online course today.
Start now
Create your course
with
Autoplay
Autocomplete
Previous Lesson
Complete and Continue
Generative AIOps Training by Mr. Vimal Daga
Linux Training
Day 1 - Why we need an OS | Basic commands in linux | Interrupt Signals | Ctrl key shortcuts | Date command and its options | Man command | How to run any command/program in background | Creating the file and directory | Uses of Pipe symbol (222:23)
Summary
Day 2 - Shells in Linux | Local host | Remote host | What is Virtualisation | Bridge adaptor | Ping command | Ifconfig command | Setting up remote host | What is Ssh protocol | What is a process | Ps-aux | Process id | X11 program to launch graphical program | Enabling ssh root login (210:21)
Summary
Day 3 - What is software/package | rpm command | How to check software behind any command | Installing and uninstalling softwares Check softwares in the ISO | What is yum | Yum configuration | How to switch to root user | Vi editor | Vi editor options (154:37)
Summary
Day 4 -What is docker | Docker Installation | Different ways of installing OS | Docker host | What is Containerization | What is Container | Docker ps command | Docker pull command | Docker run command | Giving name to a container | Docker start command | Docker attach command (197:19)
Summary
Day 5 - script command | running coomand without login on remote system | absolute path | cd .. command | / directory | scp commmand | docker info command | docker rm command | mounting external drive to docker container (202:40)
Summary
Day 6 -different type of server | Apache web server | Install the client software | CLI and GUI | HTTP Server | Web server configuraton | Protocols | Web client setup (213:55)
Summary
7. Install podman | custom images | container os | configuration | install python3 | commit | docker file | environment | container file | workspace | diarectory | interactive and non interactive command | docker file keyword | docker hub | docker pull | docker push | tagging | docker registory (175:57)
Summary
8. Install python | docker file | cmd keyword | versioning | build time | run time | history keyword | copy keyword | and keyword | mount code | Entrypoint keyword | docker file keyword (242:22)
Summary
9. sudo concept | root power | sudoer file | sodu command | non- interactive command | password | install httpd | detached | Apache web server | selinux | cgi-bin | backend services (84:33)
Summary
10. Networking | LAN/ NIC/N/W / Ethernet Card | Wireless | IP address | fishing Attack | key network | mac address | octet | bytes | 4 octet | DNS server | look up | IPV4 | binary calculater | layer 7 firewall | server | network program | port number (75:13)
Summary
11. Linux Adminstration V9 Training By Mr. Vimal Daga on 5th May 2024_GMT20240605-053001 (128:41)
Summary 11
12. port number | pating | nating | kubernetes | fault tolerance | availability | container management tool | orchestration tool | kubernetes service | Minikube | kubectl command | cluster info | pod | launch pod | deployment | cri- (79:01)
13. Linux Adminstration V9 Training By Mr. Vimal Daga_GMT20240613-082801 (66:10)
14. Linux Adminstration V9 Training By Mr. Vimal Daga_GMT20240614-085029 (59:31)
Bonus Sessions - Linux
Plain Text | Cipher Text | Private and Public Key | Symmetric and Asymmetric Key | ssh | Key Based Authentication | User Management (217:10)
Useradd Command | adduser Command | GECOS | chfn Command | man Command | finger Command | who Command | w Command | Home Directory | home directory | Bash Shell | Nologin Shell | Shell Program | Interactive Users | Non interactive Users (138:11)
Superuser | General User | System or Service User | Hashing | Epoch Time | Password Aging (137:51)
User Permissions| Permissions on a file | Permissions on a directory | Modes | chmod Command | chown Command | su Command | Groups | chgrp Command (149:08)
DAC (Discretionary Access Control) | Linux Permissions | Special Permissions | Sticky Bit | SGID | SUID | Challenge of 'w' Permission | Set sticky bit on a folder | Primary Group | Secondary Group | newgrp command | gpasswd command | Use case of SUID (147:23)
POSIX | ACL | getfacl Command | setfacl Command | Mask | Effective Permissions | Umask | Sudo Power| Admin Level Commands | System Level Commands | /etc/sudoers main configuration file | /etc/sudoers.d secondary configuration file | Wheel Group | Visudo (172:25)
Security Program | Firewall | Network Service | Network Traffic | Firewalld Service | Pre-created rules (Zones) | Custom rules | firewall-cmd Command | Network Interface Card (NIC) | Implement Firewalld on NIC Target | Zones | PAT | Masquerade | Port Forwarding | Rich Rules (194:50)
Basic concepts of Partition | Hard Disk | Different types of Hard Disk | Steps to create Virtual Hard Disk (100:24)
Create a Partition (100:08)
Partition | Format | Mount (94:25)
LVM | Extend the LV (103:24)
LVM | Reduce LV (79:12)
Docker Bonus Session
Docker Basic Commands | Launching container | Port Number | Configure Container as Webserver and Database Server | Environmental Variables (114:19)
Word Press | MySQL | Set-up Three Tier Architecture | Patting | Hosting a Webpage | Container Linking (122:16)
Docker Networking | NAT | Networking Basics | SDN | Network Infrastructure | Bridge (129:28)
Runtime | Plugins | NAT | Bridge Network Interface | SDN | DHCP | DNS | Subnet | Gateway | IPAM | Custom Network Infrastructure (135:17)
PID | Why Docker is Superfast? | Need of OS | Process | Nested Process | Pgrep Command | /proc directory | Bash Shell | Kernel | Cgroup (98:19)
Python Training
Day 1 - Why we need a programming language | Print() function |variables | System() function | Storing multiple data| Data structures | Tuple data structure | List data structure | Len() function | Difference between list and tuple | Slicing operator| Numpy library| Array data structure| Pip command (156:01)
Summary
Day 2 - Dictionary | Pandas | Dataframe | iloc function | identation | if-else | input function | creating menu like program to select from multiple options | Os module (143:54)
Summary
Day 3 - creating Function | Right use case of functions | parameterized function | positional arguments | readability of the code | os module | not operator | for loop | and operator | subprocess.getouput() function (141:12)
Summary
4. Lis | Tuple | Functions | variables | Array | one-dimensional array | two-dimensional array (matrix) | OpenCV library | 3d array (144:23)
Summary
5. brainstorming (79:30)
6. Boolean | data type | Function | Variable | Keyword | Special keyword | Operator | For loop | String | While loop | Library (120:31)
Summary
7. Gateway interface | CGI program | API | Http protocol | Rest API | Aws cloud | Ec2 service | firewall | launch Ec2 instance | public IP | create web application | web server | install httpd | URL | which command | program file | Executable command | content type | backend code (150:54)
Summary
8. Cgi-bin | Web server | input function | search engine | q variable | query string | import cgi | field storage function | security group | ssh login | cell injection | pre tag | html form | action tag | test Api | postman tool | install postman | crud operation | get method | put method (159:32)
Summary
8.1_Python Programming Training By Mr. Vimal DagaGMT20240528-103753 (112:18)
9. Custom data structure | Template| list | Initiatioztion | reference | Multi-threding | parallel | inheritance | single inheritance | base class | drive class | Multiple inheritance | constructor | crud operation | public variable | private keyword | access modifier concept (277:45)
Summary
10. opencv | numpy array | crop face | object | computer vision | model | haar cascade | haar cascade face director model | Cascade classifier | detect multi scale function | 2D | coordination | face recognition | not keyword | None keyword (212:48)
Summary
11. cvzone | Tzdata | Cv2 | hand tracking | hand Detector | Find hand | hand landmarks | import os | if else program | pose tracking (215:47)
Summary
12. Class | Object | Memory | RAM | Variable | Function (149:02)
Summary
13. Variable | Function | Object | Class | Keyword | Get method | Set method | Custom data structure | List | Constructor (72:36)
Summary
14. MongoDB | Storage devices | database management system | SQL language | unstructured data | Document oriented data base | row oriented data base | graph databases | Crud operation | CLI & GUI & python | mongo shell | compass | protocol | connections string | data format | get collection (142:03)
Summary
15. pymongo | dir function | mongo client | database | drop database | get database | create database | collection | find method | insert one | cursor | find all | json format | for loop | file handling | operators | $gt | $gte | while loop | constructor | multi tier architecture (128:17)
Summary
16. module | function | import keyword | py extensions | dir function | main module | multiple lines string | polymorphism | + keyword | doc string | from keyword | del keyword | module path | lambda function | anonymous function | call back function | higher order function | filter function (109:43)
Summary
17. module | function | import keyword | py extensions | dir function | main module | multiple lines string | polymorphism | + keyword | doc string | from keyword | del keyword | module path | lambda function | anonymous function | call back function | higher order function (49:39)
Bonus Session - Python
Lists | text-to-speech | pyttsx3 library | speaker driver | converting strings to audio | DataFrame | resolving row-wise operation limitations faced in dictionaries | Pandas library | loc[] function | .csv files | read_csv() function | describe() function (101:20)
list in Python | memory address | Copy module | shallow and deep copy | deepcopy() function | 2-D & 3-D lists | Functions | Iteration | for loop (105:39)
Summary - list in Python | memory address
Menu program | integration of Python and Linux | If-else conditions | while loops| system| or OS commands in Python | tput setaf <0-7> command | OS module | triple quotes (“””) | input() function | (92:04)
keyword |all types of containers: lists, dicts, sets, strings | File handling | manipulate file | two categories, text file, and binary file | handle file exceptions | append mode| Reading a file | read() | readline() | function tell ()| Closing a file | (125:34)
Summary - keyword |all types of containers: lists, dicts, sets, strings
File handling | read mode ("r"), | write mode ("w") | append mode ("a") | open() function | tell() method | file position: | Seek() function | (92:15)
Summary - File handling | read mode ("r"),
Object Oriented Programming | Classes |data structure. | object | instantiation | data member |member functions | Access Modifiers | Public | Private | Setter and Getter | (90:45)
Summary - Object Oriented Programming | Classes |data structure
Open() function | hard disk is located | “With” keyword | “speech_recognition” | “Pyaudio”| text.lower() | Google Recognize API | (117:59)
Module | function (def) | call function | OS module | if __name__ | "__main__" | infinite loop | (88:35)
Anonymous function |lambda keyword.| adding two numbers function | modulo operator | modulo operator| filter() function | built-in function | database | (90:28)
Summary - Lists | text-to-speech | pyttsx3 library
Server | Socket programming. | Networking program | IP + port Number means | Bind function | netstat -tnip command. | client | (85:45)
Summary - Server | Socket programming. | Networking program
Server side code | client side program | network programming | conn variable | conn.recv | os.system | (70:00)
Summary - Server side code | client side program
Server | Socket programming | handle input and output | external sources | IP and port number|while" loop (97:18)
Summary - Server | Socket programming | handle input and output
local IP address | Network programming | Variable|string data | Client and server| while loop (67:16)
Summary - local IP address | Network programming
Threading | Multi-threading | RAM | CPU | Stack memory | function (72:08)
Exception handling | File handling | close() | read() | write() | (88:37)
iteration | TTS | pyttsx3 | program file | speaker | (134:36)
Machine Learning
Day 1 -What is machine learning | machine learning works | How to think and find the formula | Artificial General Intelligence | What are Features | What is Feature Selection | Feature elimination | Dependent Variable | Independent Variable | Co-efficient | Hit and trial method | Loss function (107:23)
Summary
Day 2 -What is a dataset | Linear regression | Scikit learn library | What are Features | Dependent and independent variables | Pandas Library | Why to use pandas | Model fitting | Converting 1D data into 2D data | What is Supervised learning | Joblib library (120:51)
Summary
3. Activity (173:33)
4. Accuracy linear regression | pandas | values keyword | convert 1D to 2D | coefficient | bias concept | visualization technique | data point | historical data | slope | best fit line | simple linear regression | EDA technique | Matplotlib | intercept | parameter | residuals (114:59)
Summary
5. Error | Loss function | cost function | Mean Absolute Error (MAE) | Learning Curve | Slope | weightage | bias | mean_absolute_error function | model selection (110:58)
Summary
6. Multi-Linear Regression | Statistical Analysis | Features | weight | Categorical Variable | Handling Categorical Variables | One Hot Encoding | Dummy Variable | Dummy Variable trap (104:09)
Summary
7. Dummy variable trap | independent variables | Categorical | test set | training Set | Data Preprocessing | train test split | random state 6 (57:22)
Summary
8. supervised learning | CLassification | Regression | Binary Classification | Sigmoid Function | Logestic Regression | Titanic Data set | Seaborn Library | EDA (138:45)
Summary
9. confusion matrix | split dataset | train test split | random state | true positive | true negative | false positive | false negative | actual value | predicted value | type 1 and type 2 error (111:50)
Summary
10. confusion matrix | split dataset | train test split | random state | true positive | true negative | false positive | false negative | actual value | predicted value | type 1 and type 2 error (120:48)
Summary
11. What is deep learning | Pattern | What is neuron | Input layer | Hidden layer | Output layer | Activation function | Feedforward neural network (121:19)
Summary
12. Tensorflow library | Keras library | Neuron | Neural networks | Artificial neural network | Activation function | Perceptron | Creating own neural network | Dense function | Data imputation | Loss function (91:48)
Summary
13. Churm modelling dataset | Brain | Nodes | Training model for churn modelling | Supervised learning | Sequential model | Relu activation function | Sigmoid activation | function | Input layer | Hidden layer (114:10)
Summary
14. Creating model for churn modelling | Feature engineering on churn dataset | Multi-layer perceptron | Kernel initialiser | Glorot uniform initialiser (101:44)
Summary
15. Wines dataset | Creating model for wines dataset | One-hot encoding | Multicollinearity | Softmax activation function | Output attribute | Input attribute (80:38)
Summary
16. Training on wines dataset | HeNormal initialisation | Input_dim | Softmax activation function | Categorical crossentropy loss | Adam optimizer | Matrics | Epochs (90:56)
Summary
Summary 17
18. Auto feature extraction | convolution | pixel | records | stride | convore layer | feature map | convolution2D | Sequential | kernel size | brain lobes | occipital lobes | activation function | input data | input shape | 3D image | pooling | mean pooling | max pooling | average pooling (109:33)
Summary
Bonus Session - MLOps Training
Mlops Introduction (152:53)
python basics | List and nested list in python | Data analysis and pandas (267:16)
Numpy Array | Image processing | Image cropping | Data analysis basiccs and linere regression (275:45)
Regression model concept | Linear regression | Image processing (247:13)
Deep Learning Sessions
Session 1-Artificial Neural Networks (ANN)|machine learning model|human brain and neurons|accuracy |feature selection|ANN function|layers | (213:38)
Session 2-dataset|churn modelling|accuracy|chat-gpt|perception|multi-layer|feedforward neural network| (153:12)
Session 3-multi class classification in deep learning|sigmoid|wine dataset (107:07)
Session 4-computer vision in deep learning|cvzone|module|face detection module|hand tracking module (138:54)
Session 5-create code for face detection|multi-factor authentication|face recognition| (71:20)
Session 6-record|Introduction to Convolutional Neural Networks (CNN)| (75:22)
Session 7-create code for Convolutional Neural Networks (CNN) (96:38)
Session 8-pooling layer|convolution layer|flatten|dense|sequential| (113:22)
Session 9-Introduction of recurrent neural network (RNN) (120:52)
Session 10-data preprocessing|one dimensionalneural network|time series|google stock price test data set (93:12)
Session 11-create code for google stock price test data set (67:15)
NLP Training
Session 1 - 4th Sept-Difference between NLP and nlu | sentiment analysis | implementation of textblob | polarity | subjectivity | objectivity (109:15)
Session 2 - 5th Sept-Implementation on dataset | data handling with pandas | textblob implementation on data (82:44)
Session 3 - 6th Sept-Tokenization | lemmatization | stemming | implementation of nltk (103:26)
Session 4 - 7th Sept-nltk installation | WordNet | Spacy | Automatic Conversion from uppercase to lowercase (113:47)
Session 5 - 11th Sept-Revision Session (66:16)
Session 6 - 12th Sept-NLU |introduction of spacy |token ID|read token|mapping| (101:52)
AWS Cloud Training
1. Cloud Computing Concept | Physical Devices-RAM, CPU | Compute Devices | Importance of OS & Physical Devices | Scalability Concepts | CSP(Cloud Service Provider) | Servers Or Instances | AWS Services | EC2 Service | Availability Zones | Regions | Latency | Ways To Launch OS | Automation Code (323:46)
Summary
2. Pay as go model | lambda service | Serverless | fully managed services | tenant/user | responsibly | function | microservice | create lambada | Ec2 service launch from lambda | AMI ID | variables | short live program | time out | API | put rule | traffic route | Get method (286:30)
Summary
3. IAM | Root account | Create IAM user | permission policies | crud operation | console Url | full access | administrator access | power user | access key | secret key | monitoring | cloud watch | CPU utilization | time series database | instance ID | graph | invocation | log group | log event (302:51)
Summary
4. AWS Cloud Training By Mr. Vimal Daga on 8th June 2024 _GMT20240608-082117 (178:03)
5. AWS Cloud Training By the World Record Holder Mr Vimal Daga on 15th June 2024_GMT20240615-093007 (118:01)
AWS Bonus Sessions
Discussion on Cloud First Approach | Discussion on Cloud Computing Basic | Introduction about Servers | AWS Cloud Introduction | AWS Data centers and their locations | AWS Availability zones | AWS Regions | AWS EC2 (127:21)
Accessing EC2 instance using SSH protocol | Internet's networking over the globe | Proxy concept | Socks5 Proxy with implementation | Deploying simple web page on EC2 | Global Accelerator | AWS's Global Network Infrastructure (142:04)
Utility/Standalone Service | AWS Global Network | Global Accelerator | Edge locations | AWS Compute Optimizer | regional service | global service (126:28)
Need of the cloud | Public cloud | Ec2 and azure virtual machine | Multicloud strategy | Cost optimisation | Latency issue | Infrastructure as a service | Region and Location | Multicloud architecture | Storage(EBS and Azure disk storage) | Auto scaling (ASG and auto scaling sets) (123:04)
Summary - Need of the cloud | Public cloud
AWS CLI | Need for Aws CLI | Aws configure | Log in to Aws using the CLI | Access key and secret key | Launching the EC2 instance using CLI | Creating own custom commands | Script | Uploading object in S3 bucket using AWS CLI (110:41)
Summary - AWS CLI | Need for Aws CLI | Aws configure
What is a Platform | Platform as a service | Infrastructure as a service | AWS Elastic Beanstalk | Setting up apache webserver in EC2 instance | EC2 vs Beanstalk uses | Setting up AWS Elastic Beanstalk | Domain name | Environment | Creating and uploading the code in Beanstalk (127:10)
Summary - What is a Platform | Platform as a service
What is IAM Role | Policy | Attaching different policies to EC2 | Attaching policies to Lambda function | AWS Systems manager | Nodes | SSM agent | Allowing ssm agent policy for EC2 instance | Running commands in EC2 using the AWS Systems manage (123:08)
Summary - What is IAM Role | Policy
AWS Cloud Training By the World Record Holder Mr Vimal Daga_GMT20240503-151933 (108:28)
Summary - AWS Cloud Training
Prompt Engineering Training
1. prompt engineering | What is Generative AI | Contexts | Long term memory | What is LSTM | Context keyword | models | What is LLM | OpenAI | Hallucination problem | What is fine tuning | OpenAI playground | Some basic prompts example | Giving roles to the chatgpt | What is system role (281:00)
Summary
2. System role | Assistant role | LLM module | Open AI | openai play ground | Temperature | parameters | openai library | chat competition model | context window | GPT-3. 5 turbo | Tokens | Embedding model | open ai Tokenizer | pricing | Tokens | Maximum Tokens | API keys (184:18)
Summary
3. generative | zero shot problem | QNA type prompting | few shot prompting | chain of thought | fine tuning | think step by step | input keyword | contact (238:59)
Summary
Generative AI Training
Session 1 - 8th July=Prompt Engineering Use Cases|Question Answering|Text Summarization|Adversarial prompting|one-shot-learning| (477:51)
Session 2 - 9th July-chatgpt 4| difference between chatgpt 3.5 and 4|Generated Knowledge Prompting|chatgpt hack (526:23)
Session 3 - 15th July-LLM|use case of LLM|langchain model (217:37)
Session -3 - Summary
Session 4 - 16th July-langchain |create your own langchain tool from basics (301:29)
Session 5 - 13th August-openAI|LLM model| embedding llm|langchain|Query| (281:24)
LLMOps Training specialized in DevOps integrated with GenAI
Session 1 - Generative AI | LLM Model | Few shot Prompt |Chain of thought concept |AI Agents |Frame Work |LangChain |OpenAi Play Ground |Lang chain Tools|Provider|Python |Install Lang chain |Create LLm model |Import Agent |Import Tool|Google Search Library |Google API |SerpApi (110:29)
Summary - Session 1
Session 2 - AI Agent |Langchain Framework |Tools|SerpAPI|Import Google search |create Env file |Create SerpApi Key|Model + Agent + Tools = Chain|Verbose|Create a Chain of Google search (67:37)
Summary - Session 2
Session 3 - Use case of CLI|Agent |Tool|Bash shell|Launch Ec2 instance|install pip|install lang chain model |Create a Python program |Shell tool |Create a Llm model for the CLI |Install AWS commands |Launch Ec2 instance with LLm model (100:13)
Session - Session 3
4. LLMOps - Langchain Training By Mr. Vimal Daga on 16th October_GMT20241016-133629 (112:52)
Shell Scripting Training
Session 1 - Shell Scripting Training and Benefits | Scripting and Automation in Linux | Scripting Language | Command Handling | Linux Commands and Scripting Techniques | Linux Piping | Real-Time Memory Utilization | Exploring DevOps and Scripting Concepts (194:47)
2. Complete Shell Scripting Training By Mr. Vimal Daga on 22nd December_GMT20241222-094335 (227:40)
Summary Session 2
2.1_Revision Session_1. Complete Shell Scripting Training By Mr. Vimal Daga on 22nd December_GMT20241222-090537 (37:47)
3. Complete Shell Scripting Training By Mr. Vimal Daga on 23rd Dec 2024_GMT20241223-102226 (221:19)
9. sudo concept | root power | sudoer file | sodu command | non- interactive command | password | install httpd | detached | Apache web server | selinux | cgi-bin | backend services
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock